

    
      
          
            
  
Welcome to LFPykit’s documentation!






LFPykit

This Python module contain freestanding implementations of electrostatic
forward models incorporated in LFPy
(https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io).

The aim of the LFPykit module is to provide electrostatic models
in a manner that facilitates forward-model predictions of extracellular
potentials and related measures from multicompartment neuron models, but
without explicit dependencies on neural simulation software such as
NEURON (https://neuron.yale.edu, https://github.com/neuronsimulator/nrn),
Arbor (https://arbor.readthedocs.io, https://github.com/arbor-sim/arbor),
or even LFPy.
The LFPykit module can then be more easily incorporated with
these simulators, or in various projects that utilize them such as
LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy).
BMTK (https://alleninstitute.github.io/bmtk/, https://github.com/AllenInstitute/bmtk),
etc.

Its main functionality is providing class methods that return two-dimensional
linear transformation matrices M
between transmembrane currents
I of multicompartment neuron models and some
measurement Y given by Y=MI.

The presently incorporated volume conductor models have been incorporated in
LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy),
as described in various papers and books:


	Linden H, Hagen E, Leski S, Norheim ES, Pettersen KH, Einevoll GT
(2014) LFPy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons. Front.
Neuroinform. 7:41. doi: 10.3389/fninf.2013.00041


	Hagen E, Næss S, Ness TV and Einevoll GT (2018) Multimodal Modeling of Neural
Network Activity: Computing LFP, ECoG, EEG, and MEG
Signals With LFPy 2.0. Front. Neuroinform. 12:92.
doi: 10.3389/fninf.2018.00092


	Ness, T. V., Chintaluri, C., Potworowski, J., Leski, S., Glabska,
H., Wójcik, D. K., et al. (2015). Modelling and analysis of electrical
potentials recorded in microelectrode arrays (MEAs).
Neuroinformatics 13:403–426. doi: 10.1007/s12021-015-9265-6


	Nunez and Srinivasan, Oxford University Press, 2006


	Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT and Wójcik DK
(2017). Corrected Four-sphere Head Model for EEG Signals. Front. Hum.
Neurosci. 11:490. doi: 10.3389/fnhum.2017.00490
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Features

LFPykit presently incorporates different electrostatic forward models for extracellular potentials
and magnetic signals that has been derived using volume conductor theory.
In volume-conductor theory the extracellular potentials can be calculated from a distance-weighted sum of contributions from transmembrane currents of neurons.
Given the same transmembrane currents, the contributions to the magnetic field recorded both inside and outside the brain can also be computed.

The module presently incorporates different classes.
To represent the geometry of a multicompartment neuron model we have:


	CellGeometry:
Base class representing a multicompartment neuron geometry in terms
of segment x-, y-, z-coordinates and diameter.




Different classes built to map transmembrane currents of CellGeometry like instances
to different measurement modalities:


	LinearModel:
Base class representing a generic forward model
for subclassing


	CurrentDipoleMoment:
Class for predicting current dipole moments


	PointSourcePotential:
Class for predicting extracellular potentials
assuming point sources and point contacts


	LineSourcePotential:
Class for predicting extracellular potentials assuming
line sourcers and point contacts


	RecExtElectrode:
Class for simulations of extracellular potentials


	RecMEAElectrode:
Class for simulations of in vitro (slice) extracellular
potentials


	OneSphereVolumeConductor:
For computing extracellular potentials within
sand outside a homogeneous sphere


	LaminarCurrentSourceDensity:
For computing the ‘ground truth’ current source density across
cylindrical volumes aligned with the z-axis


	VolumetricCurrentSourceDensity:
For computing the ‘ground truth’ current source density on regularly
spaced 3D grid




Different classes built to map current dipole moments (i.e., computed using CurrentDipoleMoment)
to extracellular measurements:


	eegmegcalc.FourSphereVolumeConductor:
For computing extracellular potentials in
4-sphere head model (brain, CSF, skull, scalp)
from current dipole moment


	eegmegcalc.InfiniteVolumeConductor:
To compute extracellular potentials in infinite volume conductor
from current dipole moment


	eegmegcalc.InfiniteHomogeneousVolCondMEG:
Class for computing magnetic field from current dipole moments under the assumption
of infinite homogeneous volume conductor model


	eegmegcalc.SphericallySymmetricVolCondMEG:
Class for computing magnetic field from current dipole moments under the assumption
of a spherically symmetric volume conductor model


	eegmegcalc.NYHeadModel:
Class for computing extracellular potentials in detailed head volume
conductor model (https://www.parralab.org/nyhead)




Each class (except CellGeometry) should have a public method get_transformation_matrix()
that returns the linear map between the transmembrane currents or current dipole moment
and corresponding measurements (see Usage below)



Usage

A basic usage example using a mock 3-segment stick-like neuron,
treating each segment as a point source in a linear, isotropic and homogeneous volume conductor,
computing the extracellular potential in ten different locations
alongside the cell geometry:

>>> # imports
>>> import numpy as np
>>> from lfpykit import CellGeometry, PointSourcePotential
>>> n_seg = 3
>>> # instantiate class `CellGeometry`:
>>> cell = CellGeometry(x=np.array([[0.] * 2] * n_seg),  # (µm)
                        y=np.array([[0.] * 2] * n_seg),  # (µm)
                        z=np.array([[10. * x, 10. * (x + 1)]
                                    for x in range(n_seg)]),  # (µm)
                        d=np.array([1.] * n_seg))  # (µm)
>>> # instantiate class `PointSourcePotential`:
>>> psp = PointSourcePotential(cell,
                               x=np.ones(10) * 10,
                               y=np.zeros(10),
                               z=np.arange(10) * 10,
                               sigma=0.3)
>>> # get linear response matrix mapping currents to measurements
>>> M = psp.get_transformation_matrix()
>>> # transmembrane currents (nA):
>>> imem = np.array([[-1., 1.],
                     [0., 0.],
                     [1., -1.]])
>>> # compute extracellular potentials (mV)
>>> V_ex = M @ imem
>>> V_ex
array([[-0.01387397,  0.01387397],
       [-0.00901154,  0.00901154],
       [ 0.00901154, -0.00901154],
       [ 0.01387397, -0.01387397],
       [ 0.00742668, -0.00742668],
       [ 0.00409718, -0.00409718],
       [ 0.00254212, -0.00254212],
       [ 0.00172082, -0.00172082],
       [ 0.00123933, -0.00123933],
       [ 0.00093413, -0.00093413]])





A basic usage example using a mock 3-segment stick-like neuron,
treating each segment as a point source,
computing the current dipole moment and computing the potential in ten different
remote locations away from the cell geometry:

>>> # imports
>>> import numpy as np
>>> from lfpykit import CellGeometry, CurrentDipoleMoment, \
>>>     eegmegcalc
>>> n_seg = 3
>>> # instantiate class `CellGeometry`:
>>> cell = CellGeometry(x=np.array([[0.] * 2] * n_seg),  # (µm)
                        y=np.array([[0.] * 2] * n_seg),  # (µm)
                        z=np.array([[10. * x, 10. * (x + 1)]
                                    for x in range(n_seg)]),  # (µm)
                        d=np.array([1.] * n_seg))  # (µm)
>>> # instantiate class `CurrentDipoleMoment`:
>>> cdp = CurrentDipoleMoment(cell)
>>> M_I_to_P = cdp.get_transformation_matrix()
>>> # instantiate class `eegmegcalc.InfiniteVolumeConductor` and map dipole moment to
>>> # extracellular potential at measurement sites
>>> ivc = eegmegcalc.InfiniteVolumeConductor(sigma=0.3)
>>> # compute linear response matrix between dipole moment and
>>> # extracellular potential
>>> M_P_to_V = ivc.get_transformation_matrix(np.c_[np.ones(10) * 1000,
                                             np.zeros(10),
                                             np.arange(10) * 100])
>>> # transmembrane currents (nA):
>>> imem = np.array([[-1., 1.],
                    [0., 0.],
                    [1., -1.]])
>>> # compute extracellular potentials (mV)
>>> V_ex = M_P_to_V @ M_I_to_P @ imem
>>> V_ex
array([[ 0.00000000e+00,  0.00000000e+00],
      [ 5.22657054e-07, -5.22657054e-07],
      [ 1.00041193e-06, -1.00041193e-06],
      [ 1.39855769e-06, -1.39855769e-06],
      [ 1.69852477e-06, -1.69852477e-06],
      [ 1.89803345e-06, -1.89803345e-06],
      [ 2.00697409e-06, -2.00697409e-06],
      [ 2.04182029e-06, -2.04182029e-06],
      [ 2.02079888e-06, -2.02079888e-06],
      [ 1.96075587e-06, -1.96075587e-06]])







Physical units

Notes on physical units used in LFPykit:


	There are no explicit checks for physical units


	Transmembrane currents are assumed to be in units of (nA)


	Spatial information is assumed to be in units of (µm)


	Voltages are assumed to be in units of (mV)


	Extracellular conductivities are assumed to be in units of (S/m)


	current dipole moments are assumed to be in units of (nA µm)


	Magnetic fields are assumed to be in units of (nA/µm)






Dimensionality


	Transmembrane currents are represented by arrays with shape (n_seg, n_timesteps)
where n_seg is the number of segments of the neuron model.


	Current dipole moments are represented by arrays with shape (3, n_timesteps)


	Response matrices M have shape (n_points, input.shape[0]) where n_points is
for instance the number of extracellular recording sites and input.shape[0]
the first dimension of the input; that is, the number of segments in case of
transmembrane currents or 3 in case of current dipole moments.


	predicted signals (except magnetic fields using eegmegcalc.InfiniteHomogeneousVolCondMEG or
eegmegcalc.SphericallySymmetricVolCondMEG) have shape (n_points, n_timesteps)






Documentation

The online Documentation of LFPykit can be found here:
https://lfpykit.readthedocs.io/en/latest



Dependencies

LFPykit is implemented in Python and is written (and continuously tested) for Python >= 3.7.
The main LFPykit module depends on numpy, scipy and MEAutility (https://github.com/alejoe91/MEAutility, https://meautility.readthedocs.io/en/latest/).

Running all unit tests and example files may in addition require py.test, matplotlib,
neuron (https://www.neuron.yale.edu),
(arbor coming) and
LFPy (https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io).



Installation


From development sources (https://github.com/LFPy/LFPykit)

Install the current development version on https://GitHub.com using git (https://git-scm.com):

$ git clone https://github.com/LFPy/LFPykit.git
$ cd LFPykit
$ python setup.py install  # --user optional





or using pip:

$ pip install .  # --user optional





For active development, link the repository location

$ python setup.py develop  # --user optional







Installation of stable releases on PyPI.org (https://www.pypi.org)

Installing from the Python Package Index (https://www.pypi.org/project/lfpykit):

$ pip install lfpykit  # --user optional





To upgrade the installation using pip:

$ pip install --upgrade --no-deps lfpykit







Installation of stable releases on conda-forge (https://conda-forge.org)

Installing lfpykit from the conda-forge channel can be achieved by adding conda-forge to your channels with:

$ conda config --add channels conda-forge





Once the conda-forge channel has been enabled, lfpykit can be installed with:

$ conda install lfpykit





It is possible to list all of the versions of lfpykit available on your platform with:

$ conda search lfpykit --channel conda-forge









Module lfpykit

Initialization of LFPykit

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.


	Classes

	
	
	CellGeometry:
	Base class representing a multicompartment neuron geometry
for subclassing







	
	LinearModel:
	Base class representing a generic forward model
for subclassing







	
	CurrentDipoleMoment:
	Class for predicting current dipole moments







	
	PointSourcePotential:
	Class for predicting extracellular potentials
assuming point sources and contacts







	
	LineSourcePotential:
	Class for predicting extracellular potentials assuming
line sourcers and point contacts







	
	RecExtElectrode:
	Class for simulations of extracellular potentials







	
	RecMEAElectrode:
	Class for simulations of in vitro (slice) extracellular
potentials







	
	OneSphereVolumeConductor:
	For computing extracellular potentials within
and outside a homogeneous sphere







	
	LaminarCurrentSourceDensity:
	For computing the ground truth current source density in cylindrical
volumes aligned with the z-axis.







	
	VolumetricCurrentSourceDensity:
	For computing the ground truth current source density in cubic volumes
with bin edges defined by x, y, z







	
	eegmegcalc.FourSphereVolumeConductor:
	For computing extracellular potentials in
4-sphere model (brain, CSF, skull, scalp) from current dipole moment







	
	eegmegcalc.InfiniteVolumeConductor:
	To compute extracellular potentials with current
dipole moments in infinite volume conductor







	
	eegmegcalc.InfiniteHomogeneousVolCondMEG:
	Class for computing magnetic field from current dipole moments
assuming an infinite homogeneous volume conductor







	
	eegmegcalc.SphericallySymmetricVolCondMEG:
	Class for computing magnetic field from current dipole moments
assuming a spherically symmetric volume conductor







	
	eegmegcalc.NYHeadModel:
	Class for computing extracellular potentials in detailed head volume
conductor model (https://www.parralab.org/nyhead)











	Modules

	
	cellgeometry


	models


	eegmegcalc


	lfpcalc










class CellGeometry


	
class lfpykit.CellGeometry(x, y, z, d)

	Bases: object

Base class representing the geometry of multicompartment neuron
models.


	Assumptions
	
	each compartment is piecewise linear between their start
and endpoints


	each compartment has a constant diameter


	the transmembrane current density is constant along the
compartment axis









	Parameters

	
	x: ndarray of floats
	shape (n_seg x 2) array of start- and end-point coordinates of
each compartment along x-axis in units of (µm)



	y: ndarray
	shape (n_seg x 2) array of start- and end-point coordinates of
each compartment along y-axis in units of (µm)



	z: ndarray
	shape (n_seg x 2) array of start- and end-point coordinates of
each compartment along z-axis in units of (µm)



	d: ndarray
	shape (n_seg) or shape (n_seg x 2) array of compartment
diameters in units of (µm). If the 2nd axis is equal to 2,
conical frusta is assumed.







	Attributes

	
	totnsegs: int
	number of compartments



	x: ndarray of floats
	shape (totnsegs x 2) array of start- and end-point coordinates of
each compartment along x-axis in units of (µm)



	y: ndarray
	shape (totnsegs x 2) array of start- and end-point coordinates of
each compartment along y-axis in units of (µm)



	z: ndarray
	shape (totnsegs x 2) array of start- and end-point coordinates of
each compartment along z-axis in units of (µm)



	d: ndarray
	shape (totnsegs) array of compartment diameters in units of (µm)



	length: ndarray
	lenght of each compartment in units of um



	area: ndarray
	array of compartment surface areas in units of um^2















Module lfpykit.models

Copyright (C) 2020 Computational Neuroscience Group, NMBU.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.


class LinearModel


	
class lfpykit.LinearModel(cell)

	Bases: Model

Base class that defines a 2D linear response matrix \(\mathbf{M}\)
between transmembrane currents
\(\mathbf{I}\) (nA) of a multicompartment neuron model and some
measurement \(\mathbf{Y}\) as


\[\mathbf{Y} = \mathbf{M} \mathbf{I}\]

LinearModel only creates a mapping that returns the currents
themselves. The class is suitable as a base class for other linear model
implementations, see for example class CurrentDipoleMoment or
PointSourcePotential


	Parameters

	
	cell: object
	lfpykit.CellGeometry instance or similar.
Can also be set to None which allows setting the attribute cell
after class instantiation.










	
get_transformation_matrix()

	Get linear response matrix


	Returns

	
	response_matrix: ndarray
	shape (n_seg, n_seg) ndarray







	Raises

	
	AttributeError
	if cell is None



















class CurrentDipoleMoment


	
class lfpykit.CurrentDipoleMoment(cell)

	Bases: LinearModel

LinearModel subclass that defines a 2D linear response matrix
\(\mathbf{M}\) between transmembrane current array
\(\mathbf{I}\) (nA) of a multicompartment neuron model and the
corresponding current dipole moment \(\mathbf{P}\) (nA µm) [1] as


\[\mathbf{P} = \mathbf{M} \mathbf{I}\]

The current \(\mathbf{I}\) is an ndarray of shape (n_seg, n_tsteps)
with unit (nA), and the rows of \(\mathbf{P}\) represent the
x-, y- and z-components of the current diple moment for every time
step.

The current dipole moment can be used to compute distal measures of
neural activity such as the EEG and MEG using
lfpykit.eegmegcalc.FourSphereVolumeConductor or
lfpykit.eegmegcalc.MEG, respectively


	Parameters

	
	cell: object
	CellGeometry instance or similar.










See also


	LinearModel
	

	eegmegcalc.FourSphereVolumeConductor
	

	eegmegcalc.MEG
	

	eegmegcalc.NYHeadModel
	





References
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	H. Lindén, K. H. Pettersen, G. T. Einevoll (2010). Intrinsic
dendritic filtering gives low-pass power spectra of local field
potentials. J Comput Neurosci, 29:423–444.
DOI: 10.1007/s10827-010-0245-4





Examples

Compute the current dipole moment of a 3-compartment neuron model:

>>> import numpy as np
>>> from lfpykit import CellGeometry, CurrentDipoleMoment
>>> n_seg = 3
>>> cell = CellGeometry(x=np.array([[0.]*2]*n_seg),
                        y=np.array([[0.]*2]*n_seg),
                        z=np.array([[1.*x, 1.*(x+1)]
                                    for x in range(n_seg)]),
                        d=np.array([1.]*n_seg))
>>> cdm = CurrentDipoleMoment(cell)
>>> M = cdm.get_transformation_matrix()
>>> imem = np.array([[-1., 1.],
                     [0., 0.],
                     [1., -1.]])
>>> P = M@imem
>>> P
array([[ 0.,  0.],
       [ 0.,  0.],
       [ 2., -2.]])






	
get_transformation_matrix()

	Get linear response matrix


	Returns

	
	response_matrix: ndarray
	shape (3, n_seg) ndarray







	Raises

	
	AttributeError
	if cell is None



















class PointSourcePotential


	
class lfpykit.PointSourcePotential(cell, x, y, z, sigma=0.3)

	Bases: LinearModel

LinearModel subclass that defines a 2D linear response matrix
\(\mathbf{M}\) between transmembrane current array
\(\mathbf{I}\) (nA) of a multicompartment neuron model and the
corresponding extracellular electric potential
\(\mathbf{V}_{ex}\) (mV) as


\[\mathbf{V}_{ex} = \mathbf{M} \mathbf{I}\]

The current \(\mathbf{I}\) is an ndarray of shape (n_seg, n_tsteps)
with unit (nA), and each row indexed by \(j\) of
\(\mathbf{V}_{ex}\) represents the electric potential at each
measurement site for every time step.

The elements of \(\mathbf{M}\) are computed as


\[M_{ji} = 1 / (4 \pi \sigma |\mathbf{r}_i - \mathbf{r}_j|)\]

where \(\sigma\) is the electric conductivity of the extracellular
medium, \(\mathbf{r}_i\) the midpoint coordinate of segment \(i\)
and \(\mathbf{r}_j\) the coordinate of measurement
site \(j\) [1], [2].

Assumptions:



	the extracellular conductivity \(\sigma\) is infinite,
homogeneous, frequency independent (linear) and isotropic.


	each segment is treated as a point source located at the midpoint
between its start and end point coordinate.


	each measurement site \(\mathbf{r}_j = (x_j, y_j, z_j)\) is
treated as a point.


	\(|\mathbf{r}_i - \mathbf{r}_j| >= d_i / 2\), where
\(d_i\) is the segment diameter.








	Parameters

	
	cell: object
	CellGeometry instance or similar.



	x: ndarray of floats
	x-position of measurement sites (µm)



	y: ndarray of floats
	y-position of measurement sites (µm)



	z: ndarray of floats
	z-position of measurement sites (µm)



	sigma: float > 0
	scalar extracellular conductivity (S/m)










See also


	LinearModel
	

	LineSourcePotential
	

	RecExtElectrode
	





References


	1

	Linden H, Hagen E, Leski S, Norheim ES, Pettersen KH, Einevoll GT
(2014) LFPy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons. Front.
Neuroinform. 7:41. doi: 10.3389/fninf.2013.00041
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doi: 10.3389/fninf.2018.00092





Examples

Compute the current dipole moment of a 3-compartment neuron model:

>>> import numpy as np
>>> from lfpykit import CellGeometry, PointSourcePotential
>>> n_seg = 3
>>> cell = CellGeometry(x=np.array([[0.]*2]*n_seg),
                        y=np.array([[0.]*2]*n_seg),
                        z=np.array([[10.*x, 10.*(x+1)]
                                    for x in range(n_seg)]),
                        d=np.array([1.]*n_seg))
>>> psp = PointSourcePotential(cell,
                               x=np.ones(10)*10,
                               y=np.zeros(10),
                               z=np.arange(10)*10,
                               sigma=0.3)
>>> M = psp.get_transformation_matrix()
>>> imem = np.array([[-1., 1.],
                     [0., 0.],
                     [1., -1.]])
>>> V_ex = M @ imem
>>> V_ex
array([[-0.01387397,  0.01387397],
       [-0.00901154,  0.00901154],
       [ 0.00901154, -0.00901154],
       [ 0.01387397, -0.01387397],
       [ 0.00742668, -0.00742668],
       [ 0.00409718, -0.00409718],
       [ 0.00254212, -0.00254212],
       [ 0.00172082, -0.00172082],
       [ 0.00123933, -0.00123933],
       [ 0.00093413, -0.00093413]])






	
get_transformation_matrix()

	Get linear response matrix


	Returns

	
	response_matrix: ndarray
	shape (n_coords, n_seg) ndarray







	Raises

	
	AttributeError
	if cell is None



















class LineSourcePotential


	
class lfpykit.LineSourcePotential(cell, x, y, z, sigma=0.3)

	Bases: LinearModel

LinearModel subclass that defines a 2D linear response matrix
\(\mathbf{M}\) between transmembrane current array
\(\mathbf{I}\) (nA) of a multicompartment neuron model and the
corresponding extracellular electric potential
\(\mathbf{V}_{ex}\) (mV) as


\[\mathbf{V}_{ex} = \mathbf{M} \mathbf{I}\]

The current \(\mathbf{I}\) is an ndarray of shape (n_seg, n_tsteps)
with unit (nA), and each row indexed by \(j\) of
\(\mathbf{V}_{ex}\) represents the electric potential at each
measurement site for every time step.

The elements of \(\mathbf{M}\) are computed as


\[M_{ji} = \frac{1}{ 4 \pi \sigma L_i } \log
\left|
\frac{\sqrt{h_{ji}^2+r_{ji}^2}-h_{ji}
       }{
       \sqrt{l_{ji}^2+r_{ji}^2}-l_{ji}}
\right|\]

Segment length is denoted \(L_i\), perpendicular distance from the
electrode point contact to the axis of the line segment is denoted
\(r_{ji}\), longitudinal distance measured from the start of the
segment is denoted \(h_{ji}\), and longitudinal distance from the other
end of the segment is denoted \(l_{ji}= L_i + h_{ji}\) [1], [2].

Assumptions:



	the extracellular conductivity \(\sigma\) is infinite,
homogeneous, frequency independent (linear) and isotropic


	each segment is treated as a straight line source with homogeneous
current density between its start and end point coordinate


	each measurement site \(\mathbf{r}_j = (x_j, y_j, z_j)\) is
treated as a point


	The minimum distance to a line source is set equal to segment radius.








	Parameters

	
	cell: object
	CellGeometry instance or similar.



	x: ndarray of floats
	x-position of measurement sites (µm)



	y: ndarray of floats
	y-position of measurement sites (µm)



	z: ndarray of floats
	z-position of measurement sites (µm)



	sigma: float > 0
	scalar extracellular conductivity (S/m)










See also


	LinearModel
	

	PointSourcePotential
	

	RecExtElectrode
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Examples

Compute the current dipole moment of a 3-compartment neuron model:

>>> import numpy as np
>>> from lfpykit import CellGeometry, LineSourcePotential
>>> n_seg = 3
>>> cell = CellGeometry(x=np.array([[0.]*2]*n_seg),
                        y=np.array([[0.]*2]*n_seg),
                        z=np.array([[10.*x, 10.*(x+1)]
                                    for x in range(n_seg)]),
                        d=np.array([1.]*n_seg))
>>> lsp = LineSourcePotential(cell,
                              x=np.ones(10)*10,
                              y=np.zeros(10),
                              z=np.arange(10)*10,
                              sigma=0.3)
>>> M = lsp.get_transformation_matrix()
>>> imem = np.array([[-1., 1.],
                     [0., 0.],
                     [1., -1.]])
>>> V_ex = M @ imem
>>> V_ex
array([[-0.01343699,  0.01343699],
       [-0.0084647 ,  0.0084647 ],
       [ 0.0084647 , -0.0084647 ],
       [ 0.01343699, -0.01343699],
       [ 0.00758627, -0.00758627],
       [ 0.00416681, -0.00416681],
       [ 0.002571  , -0.002571  ],
       [ 0.00173439, -0.00173439],
       [ 0.00124645, -0.00124645],
       [ 0.0009382 , -0.0009382 ]])






	
get_transformation_matrix()

	Get linear response matrix


	Returns

	
	response_matrix: ndarray
	shape (n_coords, n_seg) ndarray







	Raises

	
	AttributeError
	if cell is None



















class RecExtElectrode


	
class lfpykit.RecExtElectrode(cell, sigma=0.3, probe=None, x=None, y=None, z=None, N=None, r=None, n=None, contact_shape='circle', method='linesource', verbose=False, seedvalue=None, **kwargs)

	Bases: LinearModel

class RecExtElectrode

Main class that represents an extracellular electric recording devices such
as a laminar probe.

This class is a LinearModel subclass that defines a 2D linear response
matrix \(\mathbf{M}\) between transmembrane current array
\(\mathbf{I}\) (nA) of a multicompartment neuron model and the
corresponding extracellular electric potential
\(\mathbf{V}_{ex}\) (mV) as


\[\mathbf{V}_{ex} = \mathbf{M} \mathbf{I}\]

The current \(\mathbf{I}\) is an ndarray of shape (n_seg, n_tsteps)
with unit (nA), and each row indexed by \(j\) of
\(\mathbf{V}_{ex}\) represents the electric potential at each
measurement site for every time step.

The class differ from PointSourcePotential and
LineSourcePotential by:



	supporting anisotropic volume conductors [1]


	supporting probe geometry specifications using MEAutility
(https://meautility.readthedocs.io/en/latest/,
https://github.com/alejoe91/MEAutility).


	supporting electrode contact points with finite extents [2], [3]


	switching between point- and linesources, and a combined method that
assumes that the root element at segment index 0 is spherical.








	Parameters

	
	cell: object
	CellGeometry instance or similar.



	sigma: float or list/ndarray of floats
	extracellular conductivity in units of (S/m). A scalar value implies an
isotropic extracellular conductivity. If a length 3 list or array of
floats is provided, these values corresponds to an anisotropic
conductor with conductivities \([\sigma_x,\sigma_y,\sigma_z]\).



	probe: MEAutility MEA object or None
	MEAutility probe object



	x, y, z: ndarray
	coordinates or same length arrays of coordinates in units of (µm).



	N: None or list of lists
	Normal vectors [x, y, z] of each circular electrode contact surface,
default None



	r: float
	radius of each contact surface, default None (µm)



	n: int
	if N is not None and r > 0, the number of discrete points used to
compute the n-point average potential on each circular contact point.



	contact_shape: str
	‘circle’/’square’ (default ‘circle’) defines the contact point shape
If ‘circle’ r is the radius, if ‘square’ r is the side length



	method: str
	switch between the assumption of ‘linesource’, ‘pointsource’,
‘root_as_point’ to represent each compartment when computing
extracellular potentials



	verbose: bool
	Flag for verbose output, i.e., print more information



	seedvalue: int
	random seed when finding random position on contact with r > 0



	**kwargs:
	Additional keyword arguments parsed to RecExtElectrode.lfp_method()
which is determined by method parameter.










See also


	LinearModel
	

	PointSourcePotential
	

	LineSourcePotential
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Examples

Mock cell geometry and transmembrane currents:

>>> import numpy as np
>>> from lfpykit import CellGeometry, RecExtElectrode
>>> # cell geometry with three segments (µm)
>>> cell = CellGeometry(x=np.array([[0, 0], [0, 0], [0, 0]]),
>>>                     y=np.array([[0, 0], [0, 0], [0, 0]]),
>>>                     z=np.array([[0, 10], [10, 20], [20, 30]]),
>>>                     d=np.array([1, 1, 1]))
>>> # transmembrane currents, three time steps (nA)
>>> I_m = np.array([[0., -1., 1.], [-1., 1., 0.], [1., 0., -1.]])
>>> # electrode locations (µm)
>>> r = np.array([[28.24653166, 8.97563241, 18.9492774, 3.47296614,
>>>                1.20517729, 9.59849603, 21.91956616, 29.84686727,
>>>                4.41045505, 3.61146625],
>>>               [24.4954352, 24.04977922, 22.41262238, 10.09702942,
>>>                3.28610789, 23.50277637, 8.14044367, 4.46909208,
>>>                10.93270117, 24.94698813],
>>>               [19.16644585, 15.20196335, 18.08924828, 24.22864702,
>>>                5.85216751, 14.8231048, 24.72666694, 17.77573431,
>>>                29.34508292, 9.28381892]])
>>> # instantiate electrode, get linear response matrix
>>> el = RecExtElectrode(cell=cell, x=r[0, ], y=r[1, ], z=r[2, ],
>>>                      sigma=0.3,
>>>                      method='pointsource')
>>> M = el.get_transformation_matrix()
>>> # compute extracellular potential
>>> M @ I_m
array([[-4.11657148e-05,  4.16621950e-04, -3.75456235e-04],
       [-6.79014892e-04,  7.30256301e-04, -5.12414088e-05],
       [-1.90930536e-04,  7.34007655e-04, -5.43077119e-04],
       [ 5.98270144e-03,  6.73490846e-03, -1.27176099e-02],
       [-1.34547752e-02, -4.65520036e-02,  6.00067788e-02],
       [-7.49957880e-04,  7.03763787e-04,  4.61940938e-05],
       [ 8.69330232e-04,  1.80346156e-03, -2.67279180e-03],
       [-2.04546513e-04,  6.58419628e-04, -4.53873115e-04],
       [ 6.82640209e-03,  4.47953560e-03, -1.13059377e-02],
       [-1.33289553e-03, -1.11818140e-04,  1.44471367e-03]])





Compute extracellular potentials after simulating and storage of
transmembrane currents with the LFPy.Cell class:

>>> import os
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import LFPy
>>> from lfpykit import CellGeometry, RecExtElectrode
>>>
>>> cellParameters = {
>>>     'morphology': os.path.join(LFPy.__path__[0], 'test',
>>>                                'ball_and_sticks.hoc'),
>>>     'v_init': -65,                         # initial voltage
>>>     'cm': 1.0,                             # membrane capacitance
>>>     'Ra': 150,                             # axial resistivity
>>>     'passive': True,                       # insert passive channels
>>>     'passive_parameters': {"g_pas":1./3E4,
>>>                            "e_pas":-65}, # passive params
>>>     'dt': 2**-4,                         # simulation time res
>>>     'tstart': 0.,                        # start t of simulation
>>>     'tstop': 50.,                        # end t of simulation
>>> }
>>> cell = LFPy.Cell(**cellParameters)
>>>
>>> synapseParameters = {
>>>     'idx': cell.get_closest_idx(x=0, y=0, z=800), # segment
>>>     'e': 0,                                # reversal potential
>>>     'syntype': 'ExpSyn',                   # synapse type
>>>     'tau': 2,                              # syn. time constant
>>>     'weight': 0.01,                        # syn. weight
>>>     'record_current': True                 # syn. current record
>>> }
>>> synapse = LFPy.Synapse(cell, **synapseParameters)
>>> synapse.set_spike_times(np.array([10., 15., 20., 25.]))
>>>
>>> cell.simulate(rec_imem=True)
>>>
>>> N = np.empty((16, 3))
>>> for i in range(N.shape[0]): N[i,] = [1, 0, 0] # normal vectors
>>> electrodeParameters = {         # parameters for RecExtElectrode class
>>>     'sigma': 0.3,              # Extracellular potential
>>>     'x': np.zeros(16)+25,      # Coordinates of electrode contacts
>>>     'y': np.zeros(16),
>>>     'z': np.linspace(-500,1000,16),
>>>     'n': 20,
>>>     'r': 10,
>>>     'N': N,
>>> }
>>> electrode = RecExtElectrode(cell, **electrodeParameters)
>>> M = electrode.get_transformation_matrix()
>>> V_ex = M @ cell.imem
>>> plt.matshow(V_ex)
>>> plt.colorbar()
>>> plt.axis('tight')
>>> plt.show()





Compute extracellular potentials during simulation:

>>> import os
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import LFPy
>>> from lfpykit import CellGeometry, RecExtElectrode
>>>
>>> cellParameters = {
>>>     'morphology': os.path.join(LFPy.__path__[0], 'test',
>>>                                'ball_and_sticks.hoc'),
>>>     'v_init': -65,                         # initial voltage
>>>     'cm': 1.0,                             # membrane capacitance
>>>     'Ra': 150,                             # axial resistivity
>>>     'passive': True,                       # insert passive channels
>>>     'passive_parameters': {"g_pas":1./3E4,
>>>                            "e_pas":-65}, # passive params
>>>     'dt': 2**-4,                         # simulation time res
>>>     'tstart': 0.,                        # start t of simulation
>>>     'tstop': 50.,                        # end t of simulation
>>> }
>>> cell = LFPy.Cell(**cellParameters)
>>>
>>> synapseParameters = {
>>>     'idx': cell.get_closest_idx(x=0, y=0, z=800), # compartment
>>>     'e': 0,                                # reversal potential
>>>     'syntype': 'ExpSyn',                   # synapse type
>>>     'tau': 2,                              # syn. time constant
>>>     'weight': 0.01,                        # syn. weight
>>>     'record_current': True                 # syn. current record
>>> }
>>> synapse = LFPy.Synapse(cell, **synapseParameters)
>>> synapse.set_spike_times(np.array([10., 15., 20., 25.]))
>>>
>>> N = np.empty((16, 3))
>>> for i in range(N.shape[0]): N[i,] = [1, 0, 0] #normal vec. of contacts
>>> electrodeParameters = {         # parameters for RecExtElectrode class
>>>     'sigma': 0.3,              # Extracellular potential
>>>     'x': np.zeros(16)+25,      # Coordinates of electrode contacts
>>>     'y': np.zeros(16),
>>>     'z': np.linspace(-500,1000,16),
>>>     'n': 20,
>>>     'r': 10,
>>>     'N': N,
>>> }
>>> electrode = RecExtElectrode(cell, **electrodeParameters)
>>> cell.simulate(probes=[electrode])
>>> plt.matshow(electrode.data)
>>> plt.colorbar()
>>> plt.axis('tight')
>>> plt.show()





Use MEAutility to to handle probes

>>> import os
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import MEAutility as mu
>>> import LFPy
>>> from lfpykit import CellGeometry, RecExtElectrode
>>>
>>> cellParameters = {
>>>     'morphology': os.path.join(LFPy.__path__[0], 'test',
>>>                                'ball_and_sticks.hoc'),
>>>     'v_init': -65,                         # initial voltage
>>>     'cm': 1.0,                             # membrane capacitance
>>>     'Ra': 150,                             # axial resistivity
>>>     'passive': True,                       # insert passive channels
>>>     'passive_parameters': {"g_pas":1./3E4,
>>>                            "e_pas":-65}, # passive params
>>>     'dt': 2**-4,                         # simulation time res
>>>     'tstart': 0.,                        # start t of simulation
>>>     'tstop': 50.,                        # end t of simulation
>>> }
>>> cell = LFPy.Cell(**cellParameters)
>>>
>>> synapseParameters = {
>>>     'idx': cell.get_closest_idx(x=0, y=0, z=800), # compartment
>>>     'e': 0,                                # reversal potential
>>>     'syntype': 'ExpSyn',                   # synapse type
>>>     'tau': 2,                              # syn. time constant
>>>     'weight': 0.01,                        # syn. weight
>>>     'record_current': True                 # syn. current record
>>> }
>>> synapse = LFPy.Synapse(cell, **synapseParameters)
>>> synapse.set_spike_times(np.array([10., 15., 20., 25.]))
>>>
>>> cell.simulate(rec_imem=True)
>>>
>>> probe = mu.return_mea('Neuropixels-128')
>>> electrode = RecExtElectrode(cell, probe=probe)
>>> V_ex = electrode.get_transformation_matrix() @ cell.imem
>>> mu.plot_mea_recording(V_ex, probe)
>>> plt.axis('tight')
>>> plt.show()






	
get_transformation_matrix()

	Get linear response matrix


	Returns

	
	response_matrix: ndarray
	shape (n_contacts, n_seg) ndarray







	Raises

	
	AttributeError
	if cell is None



















class RecMEAElectrode


	
class lfpykit.RecMEAElectrode(cell, sigma_T=0.3, sigma_S=1.5, sigma_G=0.0, h=300.0, z_shift=0.0, steps=20, probe=None, x=array([0]), y=array([0]), z=array([0]), N=None, r=None, n=None, method='linesource', verbose=False, seedvalue=None, squeeze_cell_factor=None, **kwargs)

	Bases: RecExtElectrode

class RecMEAElectrode

Electrode class that represents an extracellular in vitro slice recording
as a Microelectrode Array (MEA). Inherits RecExtElectrode class

Illustration:

          Above neural tissue (Saline) -> sigma_S
<----------------------------------------------------> z = z_shift + h

          Neural Tissue -> sigma_T

               o -> source_pos = [x',y',z']

<-----------*----------------------------------------> z = z_shift + 0
             \-> elec_pos = [x,y,z]

          Below neural tissue (MEA Glass plate) -> sigma_G





For further details, see reference [1].


	Parameters

	
	cell: object
	GeometryCell instance or similar.



	sigma_T: float
	extracellular conductivity of neural tissue in unit (S/m)



	sigma_S: float
	conductivity of saline bath that the neural slice is
immersed in [1.5] (S/m)



	sigma_G: float
	conductivity of MEA glass electrode plate. Most commonly
assumed non-conducting [0.0] (S/m)



	h: float, int
	Thickness in um of neural tissue layer containing current
the current sources (i.e., in vitro slice or cortex)



	z_shift: float, int
	Height in um of neural tissue layer bottom. If e.g., top of neural
tissue layer should be z=0, use z_shift=-h. Defaults to z_shift = 0, so
that the neural tissue layer extends from z=0 to z=h.



	squeeze_cell_factor: float or None
	Factor to squeeze the cell in the z-direction. This is
needed for large cells that are thicker than the slice, since no part
of the cell is allowed to be outside the slice. The squeeze is done
after the neural simulation, and therefore does not affect neuronal
simulation, only calculation of extracellular potentials.



	probe: MEAutility MEA object or None
	MEAutility probe object



	x, y, z: np.ndarray
	coordinates or arrays of coordinates in units of (um).
Must be same length



	N: None or list of lists
	Normal vectors [x, y, z] of each circular electrode contact surface,
default None



	r: float
	radius of each contact surface, default None



	n: int
	if N is not None and r > 0, the number of discrete points used to
compute the n-point average potential on each circular contact point.



	contact_shape: str
	‘circle’/’square’ (default ‘circle’) defines the contact point shape
If ‘circle’ r is the radius, if ‘square’ r is the side length



	method: str
	switch between the assumption of ‘linesource’, ‘pointsource’,
‘root_as_point’ to represent each compartment when computing
extracellular potentials



	verbose: bool
	Flag for verbose output, i.e., print more information



	seedvalue: int
	random seed when finding random position on contact with r > 0










See also


	LinearModel
	

	PointSourcePotential
	

	LineSourcePotential
	

	RecExtElectrode
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Examples

Mock cell geometry and transmembrane currents:

>>> import numpy as np
>>> from lfpykit import CellGeometry, RecMEAElectrode
>>> # cell geometry with four segments (µm)
>>> cell = CellGeometry(
>>>     x=np.array([[0, 10], [10, 20], [20, 30], [30, 40]]),
>>>     y=np.array([[0, 0], [0, 0], [0, 0], [0, 0]]),
>>>     z=np.array([[0, 0], [0, 0], [0, 0], [0, 0]]) + 10,
>>>     d=np.array([1, 1, 1, 1]))
>>> # transmembrane currents, three time steps (nA)
>>> I_m = np.array([[0.25, -1., 1.],
>>>                 [-1., 1., -0.25],
>>>                 [1., -0.25, -1.],
>>>                 [-0.25, 0.25, 0.25]])
>>> # electrode locations (µm)
>>> r = np.stack([np.arange(10)*4 + 2, np.zeros(10), np.zeros(10)])
>>> # instantiate electrode, get linear response matrix
>>> el = RecMEAElectrode(cell=cell,
>>>                      sigma_T=0.3, sigma_S=1.5, sigma_G=0.0,
>>>                      x=r[0, ], y=r[1, ], z=r[2, ],
>>>                      method='pointsource')
>>> M = el.get_transformation_matrix()
>>> # compute extracellular potential
>>> M @ I_m
array([[-0.00233572, -0.01990957,  0.02542055],
       [-0.00585075, -0.01520865,  0.02254483],
       [-0.01108601, -0.00243107,  0.01108601],
       [-0.01294584,  0.01013595, -0.00374823],
       [-0.00599067,  0.01432711, -0.01709416],
       [ 0.00599067,  0.01194602, -0.0266944 ],
       [ 0.01294584,  0.00953841, -0.02904238],
       [ 0.01108601,  0.00972426, -0.02324134],
       [ 0.00585075,  0.01075236, -0.01511768],
       [ 0.00233572,  0.01038382, -0.00954429]])





See also <LFPy>/examples/example_MEA.py

>>> import os
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import LFPy
>>> from lfpykit import CellGeometry, RecMEAElectrode
>>>
>>> cellParameters = {
>>>     'morphology': os.path.join(LFPy.__path__[0], 'test',
>>>                                'ball_and_sticks.hoc'),
>>>     'v_init': -65,                          # initial voltage
>>>     'cm': 1.0,                             # membrane capacitance
>>>     'Ra': 150,                             # axial resistivity
>>>     'passive': True,                        # insert passive channels
>>>     'passive_parameters': {"g_pas":1./3E4,
>>>                            "e_pas":-65}, # passive params
>>>     'dt': 2**-4,                           # simulation time res
>>>     'tstart': 0.,                        # start t of simulation
>>>     'tstop': 50.,                        # end t of simulation
>>> }
>>> cell = LFPy.Cell(**cellParameters)
>>> cell.set_rotation(x=np.pi/2, z=np.pi/2)
>>> cell.set_pos(z=100)
>>> synapseParameters = {
>>>     'idx': cell.get_closest_idx(x=800, y=0, z=100), # segment
>>>     'e': 0,                                # reversal potential
>>>     'syntype': 'ExpSyn',                   # synapse type
>>>     'tau': 2,                              # syn. time constant
>>>     'weight': 0.01,                       # syn. weight
>>>     'record_current': True                 # syn. current record
>>> }
>>> synapse = LFPy.Synapse(cell, **synapseParameters)
>>> synapse.set_spike_times(np.array([10., 15., 20., 25.]))
>>>
>>> MEA_electrode_parameters = {
>>>     'sigma_T': 0.3,      # extracellular conductivity
>>>     'sigma_G': 0.0,      # MEA glass electrode plate conductivity
>>>     'sigma_S': 1.5,      # Saline bath conductivity
>>>     'x': np.linspace(0, 1200, 16),  # 1d vector of positions
>>>     'y': np.zeros(16),
>>>     'z': np.zeros(16),
>>>     "method": "pointsource",
>>>     "h": 300,
>>>     "squeeze_cell_factor": 0.5,
>>> }
>>> cell.simulate(rec_imem=True)
>>>
>>> MEA = RecMEAElectrode(cell, **MEA_electrode_parameters)
>>> V_ext = MEA.get_transformation_matrix() @ lfpy_cell.imem
>>>
>>> plt.matshow(V_ext)
>>> plt.colorbar()
>>> plt.axis('tight')
>>> plt.show()






	
distort_cell_geometry(axis='z', nu=0.0)

	Distorts cellular morphology with a relative squeeze_cell_factor along
a chosen axis preserving Poisson’s ratio. A ratio nu=0.5 assumes
uncompressible and isotropic media that embeds the cell. A ratio nu=0
will only affect geometry along the chosen axis. A ratio nu=-1 will
isometrically scale the neuron geometry along each axis.
This method does not affect the underlying cable properties of the
cell, only predictions of extracellular measurements (by affecting the
relative locations of sources representing the compartments).


	Parameters

	
	axis: str
	which axis to apply compression/stretching. Default is “z”.



	nu: float
	Poisson’s ratio. Ratio between axial and transversal
compression/stretching. Default is 0.














	
get_transformation_matrix()

	Get linear response matrix


	Returns

	
	response_matrix: ndarray
	shape (n_contacts, n_seg) ndarray







	Raises

	
	AttributeError
	if cell is None



















class OneSphereVolumeConductor


	
class lfpykit.OneSphereVolumeConductor(cell, r, R=10000.0, sigma_i=0.3, sigma_o=0.03)

	Bases: LinearModel

Computes extracellular potentials within and outside a spherical volume-
conductor model that assumes homogeneous, isotropic, linear (frequency
independent) conductivity in and outside the sphere with a radius R. The
conductivity in and outside the sphere must be greater than 0, and the
current source(s) must be located within the radius R.

The implementation is based on the description of electric potentials of
point charge in an dielectric sphere embedded in dielectric media [1],
which is mathematically equivalent to a current source in conductive media.

This class is a LinearModel subclass that defines a 2D linear response
matrix \(\mathbf{M}\) between transmembrane current array
\(\mathbf{I}\) (nA) of a multicompartment neuron model and the
corresponding extracellular electric potential
\(\mathbf{V}_{ex}\) (mV) as


\[\mathbf{V}_{ex} = \mathbf{M} \mathbf{I}\]

The current \(\mathbf{I}\) is an ndarray of shape (n_seg, n_tsteps)
with unit (nA), and each row indexed by \(j\) of
\(\mathbf{V}_{ex}\) represents the electric potential at each
measurement site for every time step.


	Parameters

	
	cell: object or None
	CellGeometry instance or similar.



	r: ndarray, dtype=float
	shape(3, n_points) observation points in space in spherical coordinates
(radius, theta, phi) relative to the center of the sphere.



	R: float
	sphere radius (µm)



	sigma_i: float
	electric conductivity for radius r <= R (S/m)



	sigma_o: float
	electric conductivity for radius r > R (S/m)
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Examples

Compute the potential for a single monopole along the x-axis:

>>> # import modules
>>> from lfpykit import OneSphereVolumeConductor
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> # observation points in spherical coordinates (flattened)
>>> X, Y = np.mgrid[-15000:15100:1000., -15000:15100:1000.]
>>> r = np.array([np.sqrt(X**2 + Y**2).flatten(),
>>>               np.arctan2(Y, X).flatten(),
>>>               np.zeros(X.size)])
>>> # set up class object and compute electric potential in all locations
>>> sphere = OneSphereVolumeConductor(cell=None, r=r, R=10000.,
>>>                                   sigma_i=0.3, sigma_o=0.03)
>>> Phi = sphere.calc_potential(rs=8000, current=1.).reshape(X.shape)
>>> # plot
>>> fig, ax = plt.subplots(1,1)
>>> im=ax.contourf(X, Y, Phi,
>>>                levels=np.linspace(Phi.min(),
>>>                np.median(Phi[np.isfinite(Phi)]) * 4, 30))
>>> circle = plt.Circle(xy=(0,0), radius=sphere.R, fc='none', ec='k')
>>> ax.add_patch(circle)
>>> fig.colorbar(im, ax=ax)
>>> plt.show()






	
calc_potential(rs, current, min_distance=1.0, n_max=1000)

	Return the electric potential at observation points for source current
as function of time.


	Parameters

	
	rs: float
	monopole source location along the horizontal x-axis (µm)



	current: float or ndarray, dtype float
	float or shape (n_tsteps, ) array containing source current (nA)



	min_distance: None or float
	minimum distance between source location and observation point (µm)
(in order to avoid singularities)



	n_max: int
	Number of elements in polynomial expansion to sum over (see [1]).







	Returns

	
	Phi: ndarray
	shape (n-points, ) ndarray of floats if I is float like. If I is
an 1D ndarray, and shape (n-points, I.size) ndarray is returned.
Unit (mV).









References
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get_transformation_matrix(n_max=1000)

	Compute linear mapping between transmembrane currents of
CellGeometry like object instance and extracellular potential in
and outside of sphere.


	Parameters

	
	n_max: int
	Number of elements in polynomial expansion to sum over
(see [1]).







	Returns

	
	ndarray
	Shape (n_points, n_compartments) mapping between individual
segments and extracellular potential in extracellular locations







	Raises

	
	AttributeError
	if cell is None









Notes

Each segment is treated as a point source in space. The minimum
source to measurement site distance will be set to the diameter of
each segment

References
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Examples

Compute extracellular potential in one-sphere volume conductor model
from LFPy.Cell object:

>>> # import modules
>>> import LFPy
>>> from lfpykit import CellGeometry,         >>>     OneSphereVolumeConductor
>>> import os
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from matplotlib.collections import PolyCollection
>>> # create cell
>>> cell = LFPy.Cell(morphology=os.path.join(LFPy.__path__[0], 'test',
>>>                                          'ball_and_sticks.hoc'),
>>>                  tstop=10.)
>>> cell.set_pos(z=9800.)
>>> # stimulus
>>> syn = LFPy.Synapse(cell, idx=cell.totnsegs-1, syntype='Exp2Syn',
>>>                    weight=0.01)
>>> syn.set_spike_times(np.array([1.]))
>>> # simulate
>>> cell.simulate(rec_imem=True)
>>> # observation points in spherical coordinates (flattened)
>>> X, Z = np.mgrid[-500:501:10., 9500:10501:10.]
>>> Y = np.zeros(X.shape)
>>> r = np.array([np.sqrt(X**2 + Z**2).flatten(),
>>>               np.arccos(Z / np.sqrt(X**2 + Z**2)).flatten(),
>>>               np.arctan2(Y, X).flatten()])
>>> # set up class object and compute mapping between segment currents
>>> # and electric potential in space
>>> sphere = OneSphereVolumeConductor(cell, r=r, R=10000.,
>>>                                   sigma_i=0.3, sigma_o=0.03)
>>> M = sphere.get_transformation_matrix(n_max=1000)
>>> # pick out some time index for the potential and compute potential
>>> ind = cell.tvec==2.
>>> V_ex = (M @ cell.imem)[:, ind].reshape(X.shape)
>>> # plot potential
>>> fig, ax = plt.subplots(1,1)
>>> zips = []
>>> for x, z in cell.get_idx_polygons(projection=('x', 'z')):
>>>     zips.append(list(zip(x, z)))
>>> polycol = PolyCollection(zips,
>>>                          edgecolors='none',
>>>                          facecolors='gray')
>>> vrange = 1E-3 # limits for color contour plot
>>> im=ax.contour(X, Z, V_ex,
>>>              levels=np.linspace(-vrange, vrange, 41))
>>> circle = plt.Circle(xy=(0,0), radius=sphere.R, fc='none', ec='k')
>>> ax.add_collection(polycol)
>>> ax.add_patch(circle)
>>> ax.axis(ax.axis('equal'))
>>> ax.set_xlim(X.min(), X.max())
>>> ax.set_ylim(Z.min(), Z.max())
>>> fig.colorbar(im, ax=ax)
>>> plt.show()















class LaminarCurrentSourceDensity


	
class lfpykit.LaminarCurrentSourceDensity(cell, z, r)

	Bases: LinearModel

Facilitates calculations of the ground truth Current Source Density (CSD)
in cylindrical volumes aligned with the z-axis based on [1] and [2].

The implementation assumes piecewise linear current sources similar to
LineSourcePotential, and accounts for the fraction of each segment’s
length within each volume, see Eq. 11 in [2].

This class is a LinearModel subclass that defines a 2D linear response
matrix \(\mathbf{M}\) between transmembrane current array
\(\mathbf{I}\) (nA) of a multicompartment neuron model and the
corresponding CSD
\(\mathbf{C}\) (nA/µm^3) as


\[\mathbf{C} = \mathbf{M} \mathbf{I}\]

The current \(\mathbf{I}\) is an ndarray of shape (n_seg, n_tsteps)
with unit (nA), and each row indexed by \(j\) of
\(\mathbf{C}\) represents the CSD in each volume for every time step
as the sum of currents divided by the volume.


	Parameters

	
	cell: object or None
	CellGeometry instance or similar.



	z: ndarray, dtype=float
	shape (n_volumes, 2) array of lower and upper edges of each volume
along the z-axis in units of (µm). The lower edge value must be below
the upper edge value.



	r: ndarray, dtype=float
	shape (n_volumes, ) array with assumed radius of each cylindrical
volume. Each radius must be greater than zero, and in units of (µm)







	Raises

	
	AttributeError
	inputs z and r must be ndarrays of correct shape etc.










See also


	LinearModel
	

	VolumetricCurrentSourceDensity
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Examples

Mock cell geometry and transmembrane currents:

>>> import numpy as np
>>> from lfpykit import CellGeometry, LaminarCurrentSourceDensity
>>> # cell geometry with three segments (µm)
>>> cell = CellGeometry(x=np.array([[0, 0], [0, 0], [0, 0]]),
>>>                     y=np.array([[0, 0], [0, 0], [0, 0]]),
>>>                     z=np.array([[0, 10], [10, 20], [20, 30]]),
>>>                     d=np.array([1, 1, 1]))
>>> # transmembrane currents, three time steps (nA)
>>> I_m = np.array([[0., -1., 1.], [-1., 1., 0.], [1., 0., -1.]])
>>> # define geometry (z - upper and lower boundary;  r - radius)
>>> # of cylindrical volumes aligned with the z-axis (µm)
>>> z = np.array([[-10., 0.], [0., 10.], [10., 20.],
>>>               [20., 30.], [30., 40.]])
>>> r = np.array([100., 100., 100., 100., 100.])
>>> # instantiate electrode, get linear response matrix
>>> csd = LaminarCurrentSourceDensity(cell=cell, z=z, r=r)
>>> M = csd.get_transformation_matrix()
>>> # compute current source density [nA/µm3]
>>> M @ I_m
array([[ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00, -3.18309886e-06,  3.18309886e-06],
       [-3.18309886e-06,  3.18309886e-06,  0.00000000e+00],
       [ 3.18309886e-06,  0.00000000e+00, -3.18309886e-06],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00]])






	
get_transformation_matrix()

	Get linear response matrix


	Returns

	
	response_matrix: ndarray
	shape (n_volumes, n_seg) ndarray







	Raises

	
	AttributeError
	if cell is None



















class VolumetricCurrentSourceDensity


	
class lfpykit.VolumetricCurrentSourceDensity(cell, x=None, y=None, z=None, dl=1.0)

	Bases: LinearModel

Facilitates calculations of the ground truth Current Source Density (CSD)
across 3D volumetric grid with bin edges defined by
parameters x, y and z.

The implementation assumes piecewise constant current sources similar to
LineSourcePotential, and accounts for the fraction of each segment’s
length within each volume by counting the number of points representing
partial segments with max length dl divided by the number of partial
segments.

This class is a LinearModel subclass that defines a 4D linear response
matrix \(\mathbf{M}\) of shape
(x.size-1, y.size-1, z.size-1, n_seg) between transmembrane current
array \(\mathbf{I}\) (nA) of a multicompartment neuron model and the
corresponding CSD \(\mathbf{C}\) (nA/µm^3) as


\[\mathbf{C} = \mathbf{M} \mathbf{I}\]

The current \(\mathbf{I}\) is an ndarray of shape (n_seg, n_tsteps)
with unit (nA), and each row indexed by \(j\) of
\(\mathbf{C}\) represents the CSD in each bin for every time step
as the sum of currents divided by the volume.


	Parameters

	
	cell: object or None
	CellGeometry instance or similar.



	x, y, z: ndarray, dtype=float
	shape (n, ) array of bin edges of each volume
along each axis in units of (µm). Must be monotonously increasing.



	dl: float
	discretization length of compartments before binning (µm). Default=1.
Lower values will result in more accurate estimates as each line source
gets split into more points.







	Raises

	




See also


	LinearModel
	

	LaminarCurrentSourceDensity
	





Notes

The resulting mapping M may be very sparse (i.e, mostly made up by zeros)
and can be converted into a sparse array for more efficient multiplication
for the same result:

>>> import scipy.sparse as ss
>>> M_csc = ss.csc_matrix(M.reshape((-1, M.shape[-1])))
>>> C = M_csc @ I_m
>>> np.all(C.reshape((M.shape[:-1] + (-1,))) == (M @ I_m))
True





Examples

Mock cell geometry and transmembrane currents:

>>> import numpy as np
>>> from lfpykit import CellGeometry, VolumetricCurrentSourceDensity
>>> # cell geometry with three segments (µm)
>>> cell = CellGeometry(x=np.array([[0, 0], [0, 0], [0, 0]]),
>>>                     y=np.array([[0, 0], [0, 0], [0, 0]]),
>>>                     z=np.array([[0, 10], [10, 20], [20, 30]]),
>>>                     d=np.array([1, 1, 1]))
>>> # transmembrane currents, three time steps (nA)
>>> I_m = np.array([[0., -1., 1.], [-1., 1., 0.], [1., 0., -1.]])
>>> # instantiate probe, get linear response matrix
>>> csd = VolumetricCurrentSourceDensity(cell=cell,
>>>                                      x=np.linspace(-20, 20, 5),
>>>                                      y=np.linspace(-20, 20, 5),
>>>                                      z=np.linspace(-20, 20, 5), dl=1.)
>>> M = csd.get_transformation_matrix()
>>> # compute current source density [nA/µm3]
>>> M @ I_m
array([[[[ 0.,  0.,  0.],
         [ 0.,  0.,  0.],
         [ 0.,  0.,  0.],
         [ 0.,  0.,  0.]],
         ...






	
get_transformation_matrix()

	Get linear response matrix


	Returns

	
	response_matrix: ndarray
	shape (x.size-1, y.size-1, z.size-1, n_seg) ndarray







	Raises

	
	AttributeError
	if cell is None




















Module lfpykit.eegmegcalc

Collection of classes defining forward models applicable with current dipole
moment predictions.

Copyright (C) 2017 Computational Neuroscience Group, NMBU.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.


class eegmegcalc.FourSphereVolumeConductor


	
class lfpykit.eegmegcalc.FourSphereVolumeConductor(r_electrodes, radii=[79000.0, 80000.0, 85000.0, 90000.0], sigmas=[0.3, 1.5, 0.015, 0.3], iter_factor=2.0202020202020204e-08)

	Bases: Model

Main class for computing extracellular potentials in a four-sphere
volume conductor model that assumes homogeneous, isotropic, linear
(frequency independent) conductivity within the inner sphere and outer
shells. The conductance outside the outer shell is 0 (air).

This class implements the corrected 4-sphere model described in [1], [2]


	Parameters

	
	r_electrodes: ndarray, dtype=float
	Shape (n_contacts, 3) array containing n_contacts electrode locations
in cartesian coordinates in units of (µm).
All r_el in r_electrodes must be less than or equal to scalp
radius and larger than the distance between dipole and sphere
center: |rz| < r_el <= radii[3].



	radii: list, dtype=float
	Len 4 list with the outer radii in units of (µm) for the 4
concentric shells in the four-sphere model: brain, csf, skull and
scalp, respectively.



	sigmas: list, dtype=float
	Len 4 list with the electrical conductivity in units of (S/m) of
the four shells in the four-sphere model: brain, csf, skull and
scalp, respectively.



	iter_factor: float
	iteration-stop factor










See also


	InfiniteVolumeConductor
	

	MEG
	





References


	1

	Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT and Wójcik DK
(2017) Corrected Four-sphere Head Model for EEG Signals. Front. Hum.
Neurosci. 11:490. doi: 10.3389/fnhum.2017.00490



	2

	Hagen E, Næss S, Ness TV and Einevoll GT (2018) Multimodal Modeling
of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals
With LFPy 2.0. Front. Neuroinform. 12:92. doi: 10.3389/fninf.2018.00092





Examples

Compute extracellular potential from current dipole moment in four-sphere
head model:

>>> from lfpykit.eegmegcalc import FourSphereVolumeConductor
>>> import numpy as np
>>> radii = [79000., 80000., 85000., 90000.]  # (µm)
>>> sigmas = [0.3, 1.5, 0.015, 0.3]  # (S/m)
>>> r_electrodes = np.array([[0., 0., 90000.], [0., 85000., 0.]]) # (µm)
>>> sphere_model = FourSphereVolumeConductor(r_electrodes, radii,
>>>                                          sigmas)
>>> # current dipole moment
>>> p = np.array([[10.]*10, [10.]*10, [10.]*10]) # 10 timesteps (nA µm)
>>> dipole_location = np.array([0., 0., 78000.])  # (µm)
>>> # compute potential
>>> sphere_model.get_dipole_potential(p, dipole_location)  # (mV)
array([[1.06247669e-08, 1.06247669e-08, 1.06247669e-08, 1.06247669e-08,
        1.06247669e-08, 1.06247669e-08, 1.06247669e-08, 1.06247669e-08,
        1.06247669e-08, 1.06247669e-08],
       [2.39290752e-10, 2.39290752e-10, 2.39290752e-10, 2.39290752e-10,
        2.39290752e-10, 2.39290752e-10, 2.39290752e-10, 2.39290752e-10,
        2.39290752e-10, 2.39290752e-10]])






	
get_dipole_potential(p, dipole_location)

	Return electric potential from current dipole moment p in
location dipole_location in  locations r_electrodes


	Parameters

	
	p: ndarray, dtype=float
	Shape (3, n_timesteps) array containing the x,y,z components of the
current dipole moment in units of (nA*µm) for all timesteps.



	dipole_location: ndarray, dtype=float
	Shape (3, ) array containing the position of the current dipole in
cartesian coordinates. Units of (µm).







	Returns

	
	potential: ndarray, dtype=float
	Shape (n_contacts, n_timesteps) array containing the electric
potential at contact point(s) FourSphereVolumeConductor.rxyz
in units of (mV) for all timesteps of current dipole moment p.














	
get_transformation_matrix(dipole_location)

	Get linear response matrix mapping current dipole moment in (nA µm)
located in location rz to extracellular potential in (mV)
at recording sites FourSphereVolumeConductor.rxyz (µm)


	Parameters

	
	dipole_location: ndarray, dtype=float
	Shape (3, ) array containing the position of the current dipole in
cartesian coordinates. Units of (µm).







	Returns

	
	response_matrix: ndarray
	shape (n_contacts, 3) ndarray



















class eegmegcalc.InfiniteVolumeConductor


	
class lfpykit.eegmegcalc.InfiniteVolumeConductor(sigma=0.3)

	Bases: Model

Main class for computing extracellular potentials with current dipole
moment \(\mathbf{P}\) in an infinite 3D volume conductor model that
assumes homogeneous, isotropic, linear (frequency independent)
conductivity \(\sigma\). The potential \(V\) is computed as [1]:


\[V = \frac{\mathbf{P} \cdot \mathbf{r}}{4 \pi \sigma r^3}\]


	Parameters

	
	sigma: float
	Electrical conductivity in extracellular space in units of (S/cm)










See also


	FourSphereVolumeConductor
	

	MEG
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Examples

Computing the potential from dipole moment valid in the far field limit.

>>> from lfpykit.eegmegcalc import InfiniteVolumeConductor
>>> import numpy as np
>>> inf_model = InfiniteVolumeConductor(sigma=0.3)
>>> p = np.array([[10.], [10.], [10.]])  # (nA µm)
>>> r = np.array([[1000., 0., 5000.]])  # (µm)
>>> inf_model.get_dipole_potential(p, r)  # (mV)
array([[1.20049432e-07]])






	
get_dipole_potential(p, r)

	Return electric potential from current dipole moment p in
locations r relative to dipole


	Parameters

	
	p: ndarray, dtype=float
	Shape (3, n_timesteps) array containing the x,y,z components of the
current dipole moment in units of (nA*µm) for all timesteps



	r: ndarray, dtype=float
	Shape (n_contacts, 3) array containing the displacement vectors
from dipole location to measurement location







	Returns

	
	potential: ndarray, dtype=float
	Shape (n_contacts, n_timesteps) array containing the electric
potential at contact point(s) r in units
of (mV) for all timesteps of current dipole moment p














	
get_transformation_matrix(r)

	Get linear response matrix mapping current dipole moment in (nA µm)
to extracellular potential in (mV) at recording sites r (µm)


	Parameters

	
	r: ndarray, dtype=float
	Shape (n_contacts, 3) array contaning the displacement vectors
from dipole location to measurement location (µm)







	Returns

	
	response_matrix: ndarray
	shape (n_contacts, 3) ndarray



















class eegmegcalc.InfiniteHomogeneousVolCondMEG


	
class lfpykit.eegmegcalc.InfiniteHomogeneousVolCondMEG(sensor_locations, mu=1.2566370614359173e-06)

	Bases: Model

Basic class for computing magnetic field from current dipole moment in
an infinite homogeneous volume conductor model.
For this purpose we use the Biot-Savart law derived from Maxwell’s
equations under the assumption of negligible magnetic induction
effects [1]:


\[\mathbf{H} = \frac{\mathbf{p} \times \mathbf{R}}{4 \pi R^3}\]

where \(\mathbf{p}\) is the current dipole moment, \(\mathbf{R}\)
the vector between dipole source location and measurement location, and
\(R=|\mathbf{R}|\)

Note that the magnetic field \(\mathbf{H}\) is related to the magnetic
field \(\mathbf{B}\) as


\[\mu_0 \mathbf{H} = \mathbf{B}-\mathbf{M}\]

where \(\mu_0\) is the permeability of free space (very close to
permebility of biological tissues). \(\mathbf{M}\) denotes material
magnetization (also ignored)


	Parameters

	
	sensor_locations: ndarray, dtype=float
	shape (n_locations x 3) array with x,y,z-locations of measurement
devices where magnetic field of current dipole moments is calculated.
In unit of (µm)



	mu: float
	Permeability. Default is permeability of vacuum
(\(\mu_0 = 4*\pi*10^{-7}\) T*m/A)







	Raises

	
	AssertionError
	If dimensionality of sensor_locations is wrong










See also


	SphericallySymmetricVolCondMEG
	

	FourSphereVolumeConductor
	

	InfiniteVolumeConductor
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Examples

Define cell object, create synapse, compute current dipole moment:

>>> import LFPy, os, numpy as np, matplotlib.pyplot as plt
>>> from lfpykit import CurrentDipoleMoment
>>> from lfpykit.eegmegcalc import InfiniteHomogeneousVolCondMEG as MEG
>>> # create LFPy.Cell object
>>> cell = LFPy.Cell(morphology=os.path.join(LFPy.__path__[0], 'test',
>>>                                          'ball_and_sticks.hoc'),
>>>                  passive=True)
>>> cell.set_pos(0., 0., 0.)
>>> # create single synaptic stimuli at soma (idx=0)
>>> syn = LFPy.Synapse(cell, idx=0, syntype='ExpSyn', weight=0.01, tau=5,
>>>                    record_current=True)
>>> syn.set_spike_times_w_netstim()
>>> # simulate, record current dipole moment
>>> cell.simulate(rec_imem=True)
>>> # Compute current dipole moment
>>> cdp = CurrentDipoleMoment(cell=cell)
>>> M_cdp = cdp.get_transformation_matrix()
>>> current_dipole_moment = M_cdp @ cell.imem
>>> # Compute the dipole location as an average of segment locations
>>> # weighted by membrane area:
>>> dipole_location = (cell.area * np.c_[cell.x.mean(axis=-1),
>>>                                      cell.y.mean(axis=-1),
>>>                                      cell.z.mean(axis=-1)].T
>>>                    / cell.area.sum()).sum(axis=1)
>>> # Define sensor site, instantiate MEG object, get transformation matrix
>>> sensor_locations = np.array([[1E4, 0, 0]])
>>> meg = MEG(sensor_locations)
>>> M = meg.get_transformation_matrix(dipole_location)
>>> # compute the magnetic signal in a single sensor location:
>>> H = M @ current_dipole_moment
>>> # plot output
>>> plt.figure(figsize=(12, 8), dpi=120)
>>> plt.subplot(311)
>>> plt.plot(cell.tvec, cell.somav)
>>> plt.ylabel(r'$V_{soma}$ (mV)')
>>> plt.subplot(312)
>>> plt.plot(cell.tvec, syn.i)
>>> plt.ylabel(r'$I_{syn}$ (nA)')
>>> plt.subplot(313)
>>> plt.plot(cell.tvec, H[0].T)
>>> plt.ylabel(r'$H$ (nA/um)')
>>> plt.xlabel('$t$ (ms)')
>>> plt.legend(['$H_x$', '$H_y$', '$H_z$'])
>>> plt.show()






	
calculate_B(p, r_p)

	Compute magnetic field B from single current dipole p localized
somewhere in space at r_p.

This function returns the magnetic
field \(\mathbf{B}=µ\mathbf{H}\).


	Parameters

	
	p: ndarray, dtype=float
	shape (3, n_timesteps) array with x,y,z-components of current-
dipole moment time series data in units of (nA µm)



	r_p: ndarray, dtype=float
	shape (3, ) array with x,y,z-location of dipole in units of (µm)







	Returns

	
	ndarray, dtype=float
	shape (n_locations x 3 x n_timesteps) array with x,y,z-components
of the magnetic field \(\mathbf{B}\) in units of (nA/µm)














	
calculate_H(current_dipole_moment, dipole_location)

	Compute magnetic field H from single current-dipole moment localized
in an infinite homogeneous volume conductor.


	Parameters

	
	current_dipole_moment: ndarray, dtype=float
	shape (3, n_timesteps) array with x,y,z-components of current-
dipole moment time series data in units of (nA µm)



	dipole_location: ndarray, dtype=float
	shape (3, ) array with x,y,z-location of dipole in units of (µm)







	Returns

	
	ndarray, dtype=float
	shape (n_locations x 3 x n_timesteps) array with x,y,z-components
of the magnetic field \(\mathbf{H}\) in units of (nA/µm)







	Raises

	
	AssertionError
	If dimensionality of current_dipole_moment and/or dipole_location
is wrong














	
get_transformation_matrix(dipole_location)

	Get linear response matrix mapping current dipole moment in (nA µm)
located in location dipole_location to magnetic field
\(\mathbf{H}\) in units of (nA/µm) at sensor_locations


	Parameters

	
	dipole_location: ndarray, dtype=float
	shape (3, ) array with x,y,z-location of dipole in units of (µm)







	Returns

	
	response_matrix: ndarray
	shape (n_contacts, 3, 3) ndarray



















class eegmegcalc.SphericallySymmetricVolCondMEG


	
class lfpykit.eegmegcalc.SphericallySymmetricVolCondMEG(r, mu=1.2566370614359173e-06)

	Bases: Model

Computes magnetic fields from current dipole in
spherically-symmetric volume conductor models.

This class facilitates calculations according to eq. (34) from [1]
(see also [2]) defined as:


\[ \begin{align}\begin{aligned}\mathbf{H} = \frac{1}{4 \pi} \frac{F \mathbf{p} \times
\mathbf{r}_p - (\mathbf{p} \times \mathbf{r}_p \cdot
\mathbf{r}) \nabla F}{F^2},
\text{ where}\\F = a(ra + r^2 - \mathbf{r}_p \cdot \mathbf{r}),\\\nabla F = (r^{-1}a^2 + a^{-1}\mathbf{a}
\cdot \mathbf{r} + 2a + 2r)\mathbf{r}
-(a + 2r + a^{-1}\mathbf{a} \cdot \mathbf{r})\mathbf{r}_p,\\\mathbf{a} = \mathbf{r} - \mathbf{r}_p,\\a = |\mathbf{a}|,\\r = |\mathbf{r}| .\end{aligned}\end{align} \]

Here,
\(\mathbf{p}\) is the current dipole moment,
\(\mathbf{r}\) the measurement location(s) and
\(\mathbf{r}_p\) the current dipole location.

Note that the magnetic field \(\mathbf{H}\) is related to the magnetic
field \(\mathbf{B}\) as


\[\mu_0 \mathbf{H} = \mathbf{B}-\mathbf{M} ,\]

where \(\mu_0\) denotes the permeability of free space (very close to
permebility of biological tissues).
\(\mathbf{M}\) denotes material
magnetization (which is ignored).


	Parameters

	
	r: ndarray
	sensor locations, shape (n, 3) where n denotes number of
locations, unit [µm]



	mu: float
	Permeability. Default is permeability of vacuum
(\(\mu_0 = 4\pi 10^{-7}\) Tm/A)







	Raises

	
	AssertionError
	If dimensionality of sensor locations r is wrong










See also


	InfiniteHomogeneousVolCondMEG
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Examples

Compute the magnetic field from a current dipole located

>>> import numpy as np
>>> from lfpykit.eegmegcalc import SphericallySymmetricVolCondMEG
>>> p = np.array([[0, 1, 0]]).T  # tangential current dipole (nAµm)
>>> r_p = np.array([0, 0, 90000])  # dipole location (µm)
>>> r = np.array([[0, 0, 92000]])  # measurement location (µm)
>>> m = SphericallySymmetricVolCondMEG(r=r)
>>> M = m.get_transformation_matrix(r_p=r_p)
>>> H = M @ p
>>> H  # magnetic field (nA/µm)
array([[[9.73094081e-09],
        [0.00000000e+00],
        [0.00000000e+00]]])






	
calculate_B(p, r_p)

	Compute magnetic field B from single current dipole p localized
somewhere in space at r_p.

This function returns the magnetic
field \(\mathbf{B}=µ\mathbf{H}\).


	Parameters

	
	p: ndarray, dtype=float
	shape (3, n_timesteps) array with x,y,z-components of current-
dipole moment time series data in units of (nA µm)



	r_p: ndarray, dtype=float
	shape (3, ) array with x,y,z-location of dipole in units of (µm)







	Returns

	
	ndarray, dtype=float
	shape (n_locations x 3 x n_timesteps) array with x,y,z-components
of the magnetic field \(\mathbf{B}\) in units of (nA/µm)














	
calculate_H(p, r_p)

	Compute magnetic field \(\mathbf{H}\) from single current dipole
p localized somewhere in space at r_p


	Parameters

	
	p: ndarray, dtype=float
	shape (3, n_timesteps) array with x,y,z-components of current-
dipole moment time series data in units of (nA µm)



	r_p: ndarray, dtype=float
	shape (3, ) array with x,y,z-location of dipole in units of (µm)







	Returns

	
	ndarray, dtype=float
	shape (n_locations x 3 x n_timesteps) array with x,y,z-components
of the magnetic field \(\mathbf{H}\) in units of (nA/µm)







	Raises

	
	AssertionError
	If dimensionality of current_dipole_moment p and/or
dipole_location r_p is wrong














	
get_transformation_matrix(r_p)

	Get linear response matrix mapping current dipole moment in (nA µm)
located in location r_p to magnetic field
\(\mathbf{H}\) in units of (nA/µm) at sensor locations r


	Parameters

	
	r_p: ndarray, dtype=float
	shape (3, ) array with x,y,z-location of dipole in units of (µm)







	Returns

	
	response_matrix: ndarray
	shape (n_sensors, 3, 3) ndarray







	Raises

	
	AssertionError
	If dipole location r_p has the wrong shape or if its radius
is greater than radius to any sensor location in <object>.r



















class eegmegcalc.NYHeadModel


	
class lfpykit.eegmegcalc.NYHeadModel(nyhead_file=None)

	Bases: Model

Main class for computing EEG signals from current dipole
moment \(\mathbf{P}\) in New York Head Model [1], [2]

Assumes units of nA * um for current dipole moment, and mV for the EEG


	Parameters

	
	nyhead_file: str [optional]
	Location of file containing New York Head Model. If empty (or None),
it will be looked for in the present working directory. If not present
the user is asked if it should be downloaded from
https://www.parralab.org/nyhead/sa_nyhead.mat










See also


	FourSphereVolumeConductor
	

	MEG
	





Notes

The original unit of the New York model current dipole moment
is (probably?) mA*m, and the EEG output unit is V.
LFPykit’s current dipole moments have units nA*um, and EEGs from the
NYhead model is here recomputed in units of mV.

References


	1

	Huang, Parra, Haufe (2016) The New York Head—A precise standardized
volume conductor model for EEG source localization and tES targeting.
Neuroimage 140:150–162. doi: 10.1016/j.neuroimage.2015.12.019



	2

	Naess et al. (2020) Biophysical modeling of the neural origin of EEG
and MEG signals. bioRxiv 2020.07.01.181875.
doi: 10.1101/2020.07.01.181875





Examples

Computing EEG from dipole moment.

>>> from lfpykit.eegmegcalc import NYHeadModel





>>> nyhead = NYHeadModel()





>>> nyhead.set_dipole_pos('parietal_lobe') # predefined example location
>>> M = nyhead.get_transformation_matrix()





>>> # Rotate to be along normal vector of cortex
>>> p = nyhead.rotate_dipole_to_surface_normal([[0.], [0.], [1.]])
>>> eeg = M @ p  # (mV)






	
find_closest_electrode()

	Returns minimal distance (mm) and closest electrode idx to
dipole location specified in self.dipole_pos.






	
get_transformation_matrix()

	Get linear response matrix mapping from current dipole moment (nA µm)
to EEG signal (mV) at EEG electrodes (n=231)


	Returns

	
	response_matrix: ndarray
	shape (231, 3) ndarray














	
return_closest_idx(pos)

	Returns the index of the closest vertex in the brain to a given
position (in mm).


	Parameters

	
	posarray of length (3)
	[x, y, z] of a location in the brain, given in mm, and not in um
which is the default position unit in LFPy



	Returns
	

	——-
	

	idxint
	Index of the vertex in the brain that is closest to the given
location














	
rotate_dipole_to_surface_normal(p, orig_ax_vec=[0, 0, 1])

	Returns rotated dipole moment, p_rot, oriented along the normal
vector of the cortex at the dipole location


	Parameters

	
	pnp.ndarray of size (3, num_timesteps)
	Current dipole moment from neural simulation,
[p_x(t), p_y(t), p_z(t)]. If z-axis is the depth axis of cortex
in the original neural simulation p_x(t) and p_y(t) will
typically be small, and orig_ax_vec = [0, 0, 1].



	orig_ax_vecnp.ndarray or list of length (3)
	Original surface vector of cortex in the neural simulation. If
depth axis of cortex is the z-axis, orig_ax_vec = [0, 0, 1].







	Returns

	
	p_rotnp.ndarray of size (3, num_timesteps)
	Rotated current dipole moment, oriented along cortex normal vector
at the dipole location









References

See: https://en.wikipedia.org/wiki/Rotation_matrix
under “Rotation matrix from axis and angle”






	
set_dipole_pos(dipole_pos=None)

	Sets the dipole location in the brain


	Parameters

	
	dipole_pos: None, str or array of length (3) [x, y, z) (mm)
	Location of the dipole. If no argument is given
(or dipole_pos=None), a location, ‘motorsensory_cortex’,
from self.dipole_pos_dict is used. If dipole_pos is an
array of length 3, the closest vertex in the brain will be
set as the dipole location.
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LFPykit

This Python module contain freestanding implementations of electrostatic
forward models incorporated in LFPy
(https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io).

The aim of the LFPykit module is to provide electrostatic models
in a manner that facilitates forward-model predictions of extracellular
potentials and related measures from multicompartment neuron models, but
without explicit dependencies on neural simulation software such as
NEURON (https://neuron.yale.edu, https://github.com/neuronsimulator/nrn),
Arbor (https://arbor.readthedocs.io, https://github.com/arbor-sim/arbor),
or even LFPy.
The LFPykit module can then be more easily incorporated with
these simulators, or in various projects that utilize them such as
LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy).
BMTK (https://alleninstitute.github.io/bmtk/, https://github.com/AllenInstitute/bmtk),
etc.

Its main functionality is providing class methods that return two-dimensional
linear transformation matrices M
between transmembrane currents
I of multicompartment neuron models and some
measurement Y given by Y=MI.

The presently incorporated volume conductor models have been incorporated in
LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy),
as described in various papers and books:


	Linden H, Hagen E, Leski S, Norheim ES, Pettersen KH, Einevoll GT
(2014) LFPy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons. Front.
Neuroinform. 7:41. doi: 10.3389/fninf.2013.00041


	Hagen E, Næss S, Ness TV and Einevoll GT (2018) Multimodal Modeling of Neural
Network Activity: Computing LFP, ECoG, EEG, and MEG
Signals With LFPy 2.0. Front. Neuroinform. 12:92.
doi: 10.3389/fninf.2018.00092


	Ness, T. V., Chintaluri, C., Potworowski, J., Leski, S., Glabska,
H., Wójcik, D. K., et al. (2015). Modelling and analysis of electrical
potentials recorded in microelectrode arrays (MEAs).
Neuroinformatics 13:403–426. doi: 10.1007/s12021-015-9265-6


	Nunez and Srinivasan, Oxford University Press, 2006


	Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT and Wójcik DK
(2017). Corrected Four-sphere Head Model for EEG Signals. Front. Hum.
Neurosci. 11:490. doi: 10.3389/fnhum.2017.00490
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Features

LFPykit presently incorporates different electrostatic forward models for extracellular potentials
and magnetic signals that has been derived using volume conductor theory.
In volume-conductor theory the extracellular potentials can be calculated from a distance-weighted sum of contributions from transmembrane currents of neurons.
Given the same transmembrane currents, the contributions to the magnetic field recorded both inside and outside the brain can also be computed.

The module presently incorporates different classes.
To represent the geometry of a multicompartment neuron model we have:


	CellGeometry:
Base class representing a multicompartment neuron geometry in terms
of segment x-, y-, z-coordinates and diameter.




Different classes built to map transmembrane currents of CellGeometry like instances
to different measurement modalities:


	LinearModel:
Base class representing a generic forward model
for subclassing


	CurrentDipoleMoment:
Class for predicting current dipole moments


	PointSourcePotential:
Class for predicting extracellular potentials
assuming point sources and point contacts


	LineSourcePotential:
Class for predicting extracellular potentials assuming
line sourcers and point contacts


	RecExtElectrode:
Class for simulations of extracellular potentials


	RecMEAElectrode:
Class for simulations of in vitro (slice) extracellular
potentials


	OneSphereVolumeConductor:
For computing extracellular potentials within
sand outside a homogeneous sphere


	LaminarCurrentSourceDensity:
For computing the ‘ground truth’ current source density across
cylindrical volumes aligned with the z-axis


	VolumetricCurrentSourceDensity:
For computing the ‘ground truth’ current source density on regularly
spaced 3D grid




Different classes built to map current dipole moments (i.e., computed using CurrentDipoleMoment)
to extracellular measurements:


	eegmegcalc.FourSphereVolumeConductor:
For computing extracellular potentials in
4-sphere head model (brain, CSF, skull, scalp)
from current dipole moment


	eegmegcalc.InfiniteVolumeConductor:
To compute extracellular potentials in infinite volume conductor
from current dipole moment


	eegmegcalc.InfiniteHomogeneousVolCondMEG:
Class for computing magnetic field from current dipole moments under the assumption
of infinite homogeneous volume conductor model


	eegmegcalc.SphericallySymmetricVolCondMEG:
Class for computing magnetic field from current dipole moments under the assumption
of a spherically symmetric volume conductor model


	eegmegcalc.NYHeadModel:
Class for computing extracellular potentials in detailed head volume
conductor model (https://www.parralab.org/nyhead)




Each class (except CellGeometry) should have a public method get_transformation_matrix()
that returns the linear map between the transmembrane currents or current dipole moment
and corresponding measurements (see Usage below)



Usage

A basic usage example using a mock 3-segment stick-like neuron,
treating each segment as a point source in a linear, isotropic and homogeneous volume conductor,
computing the extracellular potential in ten different locations
alongside the cell geometry:

>>> # imports
>>> import numpy as np
>>> from lfpykit import CellGeometry, PointSourcePotential
>>> n_seg = 3
>>> # instantiate class `CellGeometry`:
>>> cell = CellGeometry(x=np.array([[0.] * 2] * n_seg),  # (µm)
                        y=np.array([[0.] * 2] * n_seg),  # (µm)
                        z=np.array([[10. * x, 10. * (x + 1)]
                                    for x in range(n_seg)]),  # (µm)
                        d=np.array([1.] * n_seg))  # (µm)
>>> # instantiate class `PointSourcePotential`:
>>> psp = PointSourcePotential(cell,
                               x=np.ones(10) * 10,
                               y=np.zeros(10),
                               z=np.arange(10) * 10,
                               sigma=0.3)
>>> # get linear response matrix mapping currents to measurements
>>> M = psp.get_transformation_matrix()
>>> # transmembrane currents (nA):
>>> imem = np.array([[-1., 1.],
                     [0., 0.],
                     [1., -1.]])
>>> # compute extracellular potentials (mV)
>>> V_ex = M @ imem
>>> V_ex
array([[-0.01387397,  0.01387397],
       [-0.00901154,  0.00901154],
       [ 0.00901154, -0.00901154],
       [ 0.01387397, -0.01387397],
       [ 0.00742668, -0.00742668],
       [ 0.00409718, -0.00409718],
       [ 0.00254212, -0.00254212],
       [ 0.00172082, -0.00172082],
       [ 0.00123933, -0.00123933],
       [ 0.00093413, -0.00093413]])





A basic usage example using a mock 3-segment stick-like neuron,
treating each segment as a point source,
computing the current dipole moment and computing the potential in ten different
remote locations away from the cell geometry:

>>> # imports
>>> import numpy as np
>>> from lfpykit import CellGeometry, CurrentDipoleMoment, \
>>>     eegmegcalc
>>> n_seg = 3
>>> # instantiate class `CellGeometry`:
>>> cell = CellGeometry(x=np.array([[0.] * 2] * n_seg),  # (µm)
                        y=np.array([[0.] * 2] * n_seg),  # (µm)
                        z=np.array([[10. * x, 10. * (x + 1)]
                                    for x in range(n_seg)]),  # (µm)
                        d=np.array([1.] * n_seg))  # (µm)
>>> # instantiate class `CurrentDipoleMoment`:
>>> cdp = CurrentDipoleMoment(cell)
>>> M_I_to_P = cdp.get_transformation_matrix()
>>> # instantiate class `eegmegcalc.InfiniteVolumeConductor` and map dipole moment to
>>> # extracellular potential at measurement sites
>>> ivc = eegmegcalc.InfiniteVolumeConductor(sigma=0.3)
>>> # compute linear response matrix between dipole moment and
>>> # extracellular potential
>>> M_P_to_V = ivc.get_transformation_matrix(np.c_[np.ones(10) * 1000,
                                             np.zeros(10),
                                             np.arange(10) * 100])
>>> # transmembrane currents (nA):
>>> imem = np.array([[-1., 1.],
                    [0., 0.],
                    [1., -1.]])
>>> # compute extracellular potentials (mV)
>>> V_ex = M_P_to_V @ M_I_to_P @ imem
>>> V_ex
array([[ 0.00000000e+00,  0.00000000e+00],
      [ 5.22657054e-07, -5.22657054e-07],
      [ 1.00041193e-06, -1.00041193e-06],
      [ 1.39855769e-06, -1.39855769e-06],
      [ 1.69852477e-06, -1.69852477e-06],
      [ 1.89803345e-06, -1.89803345e-06],
      [ 2.00697409e-06, -2.00697409e-06],
      [ 2.04182029e-06, -2.04182029e-06],
      [ 2.02079888e-06, -2.02079888e-06],
      [ 1.96075587e-06, -1.96075587e-06]])







Physical units

Notes on physical units used in LFPykit:


	There are no explicit checks for physical units


	Transmembrane currents are assumed to be in units of (nA)


	Spatial information is assumed to be in units of (µm)


	Voltages are assumed to be in units of (mV)


	Extracellular conductivities are assumed to be in units of (S/m)


	current dipole moments are assumed to be in units of (nA µm)


	Magnetic fields are assumed to be in units of (nA/µm)






Dimensionality


	Transmembrane currents are represented by arrays with shape (n_seg, n_timesteps)
where n_seg is the number of segments of the neuron model.


	Current dipole moments are represented by arrays with shape (3, n_timesteps)


	Response matrices M have shape (n_points, input.shape[0]) where n_points is
for instance the number of extracellular recording sites and input.shape[0]
the first dimension of the input; that is, the number of segments in case of
transmembrane currents or 3 in case of current dipole moments.


	predicted signals (except magnetic fields using eegmegcalc.InfiniteHomogeneousVolCondMEG or
eegmegcalc.SphericallySymmetricVolCondMEG) have shape (n_points, n_timesteps)






Documentation

The online Documentation of LFPykit can be found here:
https://lfpykit.readthedocs.io/en/latest



Dependencies

LFPykit is implemented in Python and is written (and continuously tested) for Python >= 3.7.
The main LFPykit module depends on numpy, scipy and MEAutility (https://github.com/alejoe91/MEAutility, https://meautility.readthedocs.io/en/latest/).

Running all unit tests and example files may in addition require py.test, matplotlib,
neuron (https://www.neuron.yale.edu),
(arbor coming) and
LFPy (https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io).



Installation


From development sources (https://github.com/LFPy/LFPykit)

Install the current development version on https://GitHub.com using git (https://git-scm.com):

$ git clone https://github.com/LFPy/LFPykit.git
$ cd LFPykit
$ python setup.py install  # --user optional





or using pip:

$ pip install .  # --user optional





For active development, link the repository location

$ python setup.py develop  # --user optional







Installation of stable releases on PyPI.org (https://www.pypi.org)

Installing from the Python Package Index (https://www.pypi.org/project/lfpykit):

$ pip install lfpykit  # --user optional





To upgrade the installation using pip:

$ pip install --upgrade --no-deps lfpykit







Installation of stable releases on conda-forge (https://conda-forge.org)

Installing lfpykit from the conda-forge channel can be achieved by adding conda-forge to your channels with:

$ conda config --add channels conda-forge





Once the conda-forge channel has been enabled, lfpykit can be installed with:

$ conda install lfpykit





It is possible to list all of the versions of lfpykit available on your platform with:

$ conda search lfpykit --channel conda-forge
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